A note on Wakker's Cardinal Coordinate Independence
نویسندگان
چکیده
Peter P. Wakker has forcefully shown the importance for decision theory of a condition that he called “Cardinal Coordinate Independence”. Indeed, when the outcome space is rich, he proved that, for continuous weak orders, this condition fully characterizes the Subjective Expected Utility model with a finite number of states. He has furthermore explored in depth how this condition can be weakened in order to arrive at characterizations of Choquet Expected Utility and Cumulative Prospect Theory. This note studies the consequences of this condition in the absence of any transitivity assumption. Complete preference relations satisfying Cardinal Coordinate Independence are shown to be already rather well-behaved. Under a suitable necessary order denseness assumption, they may always be represented using a simple numerical model.
منابع مشابه
A note on Wakker’s Cardinal Coordinate Independence1
Peter P. Wakker has forcefully shown the importance for decision theory of a condition that he called “Cardinal Coordinate Independence”. Indeed, when the outcome space is rich, he proved that, for continuous weak orders, this condition fully characterizes the Subjective Expected Utility model with a finite number of states. He has furthermore explored in depth how this condition can be weakene...
متن کاملAn efficient extension of the Chebyshev cardinal functions for differential equations with coordinate derivatives of non-integer order
In this study, an effective numerical method for solving fractional differential equations using Chebyshev cardinal functions is presented. The fractional derivative is described in the Caputo sense. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples...
متن کاملExperience with the Cardinal Coordinate System Contributes to the Precision of Cognitive Maps
The coordinate system has been proposed as a fundamental and cross-culturally used spatial representation, through which people code location and direction information in the environment. Here we provided direct evidence demonstrating that daily experience with the cardinal coordinate system (i.e., east, west, north, and south) contributed to the representation of cognitive maps. Behaviorally, ...
متن کاملIndependence number for partitions of ω
In this paper we will define a cardinal invariant corresponding to the independence number for partitions of ω. By using Cohen forcing we will prove that this cardinal invariant is consistently smaller than the continuum.
متن کاملIndependence and Large Cardinals
The independence results in arithmetic and set theory led to a proliferation of mathematical systems. One very general way to investigate the space of possible mathematical systems is under the relation of interpretability. Under this relation the space of possible mathematical systems forms an intricate hierarchy of increasingly strong systems. Large cardinal axioms provide a canonical means o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical Social Sciences
دوره 48 شماره
صفحات -
تاریخ انتشار 2004